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A Monte Carlo implicit simulation program, Implicit Stratonovich Stochastic Differential Equations (ISSDE), is de-
veloped for solving stochastic differential equations (SDEs) that describe plasmas with Coulomb collision. The basic idea
of the program is the stochastic equivalence between the Fokker–Planck equation and the Stratonovich SDEs. The split-
ting method is used to increase the numerical stability of the algorithm for dynamics of charged particles with Coulomb
collision. The cases of Lorentzian plasma, Maxwellian plasma and arbitrary distribution function of background plasma
have been considered. The adoption of the implicit midpoint method guarantees exactly the energy conservation for the
diffusion term and thus improves the numerical stability compared with conventional Runge–Kutta methods. ISSDE is built
with C++ and has standard interfaces and extensible modules. The slowing down processes of electron beams in unmag-
netized plasma and relaxation process in magnetized plasma are studied using the ISSDE, which shows its correctness and
reliability.

Keywords: Fokker–Planck equation, Stratonovich SDE, implicit, slowing down process

PACS: 52.20.Fs, 52.25.Xz, 52.40.Mj, 52.50.Gj DOI: 10.1088/1674-1056/abefc7

1. Introduction
With the development of high-performance computing

technology, large-scale numerical simulation becomes pop-
ular and important in research of plasma problems, espe-
cially when investigating nonlinear and multi-scale processes.
Plasma is a complex physical system which is constituted with
electromagnetic fields and various charged particles, and in
many plasma problems such as beam heating [1–3] and slow-
ing down of fusion alpha particles,[4,5] collisional effects are
crucial. For collisional plasma systems, a commonly used
model is described by the well-known Fokker–Planck equa-
tion. However, the Fokker–Planck (FP) equation is extremely
difficult to solve, either analytically or via direct numerical
calculations. The main difficulty is that the FP equation is
a six-dimensional partial differential equation, which requires
an enormous amount of computation to integrate, and algo-
rithms are hard to be implemented.[6,7] Usually to simplify
the FP equation, researchers utilize the guiding center ap-
proximation or dimension reduction in the continuum (grid-
based) methods.[8–10] Compared with the continuum methods,
particle-based methods may be preferable for some reasons.
For example, particle Monte Carlo methods are simple, direct
and converge at a rate independent of the number of dimen-
sions. For particle-based hybrid methods, they are efficient,
especially for partially thermalized systems.[7,11] So with the
Monte Carlo method and the stochastic equivalence between

the stochastic differential equations (SDEs) and FP equations,
we can use SDEs to investigate collisional plasma problems
numerically. The stochastic differential equation theory plays
an important role in many scientific fields, such as biology,
chemistry, epidemiology, mechanics, microelectronics, and
economics. In the past few decades, besides the field of mathe-
matics, researchers in engineering and physics have paid more
attention on numerical simulations based on SDEs. In physics
research, the applications of SDE cover molecular dynamics,
neurodynamics, celestial dynamics.[12–14] A significant part of
SDE theory is the correlation between SDEs and FP equations.
The most used SDEs are the Itô SDE and the Stratonovich
SDE, and the corresponding numerical methods have also
been developed. Besides Itô integration and Stratonovich inte-
gration, recently researchers developed an A-type integration
which has more physical meanings and can give a natural cor-
respondence between stochastic and deterministic dynamics.
The A-type integration can also give a direct connection be-
tween trajectory dynamics and the Boltzmann–Gibbs distribu-
tion which can be used to make numerical computation less
demanding.[15–18] Many studies about plasma collision have
been carried out with the Monte Carlo method according to
the theory of SDEs. For example, Takizuka and Abe[19] in-
troduced a binary collision model by a Monte Carlo method
for particle simulations and this model can describe a collision
integral of the Landau form; Eriksson et al.[20,21] constructed
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a Monte Carlo operator for the orbit-averaged Fokker–Planck
equation to study collisions and wave-particle interaction to
improve the effectiveness of the Monte Carlo method. Cad-
jan and Ivanov[22] studied the absorption coefficient of a laser
pulse incident into a dense plasma using the Langevin method
with the Coulomb collision. Sherlock[23] used a particle-fluid
hybrid Coulomb collision Monte Carlo method to study the
phenomenon of electron beam incident into the plasma. Rosin
et al.[7] conducted Monte Carlo simulations with the Itô SDE.
Zhang and del-Castillo-Negrete[24] calculated the kinetic dy-
namic of escape electrons with a backward Monte Carlo’s
method. Stevens[25] studied the energy changes during slow-
ing down process. However, previous investigations can only
be applied to Lorentzian and Maxwellian plasmas, which are
inaccurate for cases with non-Maxwellian distributed plasmas.
For example, in particle-in-cell (PIC) simulations, distribution
functions are discretized using particles, which can be very
different from Maxwellian distributions.

In the present work, the Stratonovich SDE for Lorentzian
plasmas, Maxwellian plasmas are reviewed, and we have de-
veloped the Stratonovich SDE for arbitrary Klimontovich dis-
tribution function of background plasmas. We have also de-
veloped a Monte Carlo simulation program ISSDE, which is
suitable for solving the SDE of Coulomb collisional plasmas.
ISSDE is developed with the C++ language. The design of
its architecture considers the standard IO, and each part of the
program is modularized so that the program is easy to be ex-
panded and is also convenient to join the structure-preserving
algorithm module. ISSDE includes the following features: (1)
The evolution of the distribution function of the FP equation
is replaced by the evolution of the particles’ dynamic trajec-
tories of the Stratonovich SDE so that we can describe the
particle dynamics and show the random evolution trajectories
of particles. (2) It can be proved theoretically that the ensem-
ble average of results obtained by the ISSDE program and the
FP equation are consistent. (3) The diffusion part of parti-
cle motion is solved by the implicit midpoint method, which
guarantees the exactly energy conservation property for the
diffusion term of the collision. (4) The ISSDE can also cal-
culate the collision effect of arbitrary Klimontovich plasmas,
which is more useful for calculating collisions in PIC schemes.
Additionally, we simulate the relaxation process and slowing
down process of charged particles injected into unmagnetized
and magnetized plasma by ISSDE. We have also verified that
the ensemble-averaged evolutionary behavior of the sampling
points simulated by ISSDE is consistent with the evolution of
the distribution function described by the corresponding FP
equation. In addition, for different species of incident parti-
cles with different initial distribution function in Maxwellian
plasmas, we can obtain the distribution function and ensemble
average of velocity, energy, and temperature of the incident

particles, which are verified with theoretical results.

2. The Stratonovich SDE for Lorentzian plas-
mas and Maxwellian plasmas
The primary purpose of the ISSDE simulation program

is to solve the Stratonovich SDE, which is based on the
stochastic equivalence of FP equations and SDEs. Accord-
ing to different definitions of integrals of the random vari-
able, SDEs have many representations. The Itô SDE and the
Stratonovich SDE are the ones that have been most used.[26]

Although these two representations can be transformed from
one to another,[27] the corresponding integral form, which dif-
fers from the well-known Riemann’s, must be adopted in the
solving process. Therefore, in the numerical solution pro-
cess, attention needs to be paid on what kind of integration
it adopts. It is more preferable to model physical problems as
the Stratonovich SDE because the corresponding Stratonovich
integral satisfies the same ordinary chain rule as the Riemann
integral. In the following, we give a short introduction of the
stochastic equivalence between the FP equation and the Itô
SDE, the transformation from the Itô SDE to the Stratonovich
SDE, and obtain the corresponding Stratonovich SDEs based
on some FP equations. For more detail information, excel-
lent papers such as Refs. [26–29] can be referred. Consid-
ering the FP equation of Coulomb collision with the Rosen-
bluth MacDonald Judd (RMJ) potential, it can then receive the
equivalent Stratonovich SDE.[30] We firstly present two com-
monly used cases as examples, which are the Lorentzian and
Maxwellian plasmas. For the case of background plasma with
arbitrary distribution function, a scheme based on Cholesky
decomposition will be provided.

2.1. Stochastic equivalence of the FP equation and the
Stratonovich SDE

The collision integral of the FP equation and the Itô SDE
are (

∂ fa

∂ t

)
c
=

∂

∂vai
[−Pi(𝑣) fa +

1
2

∂

∂vak
(Qik(𝑣) fa)], (1)

dvai = Fi(𝑣)dt +Dik(𝑣)dWk, (2)

where Pi(𝑣) is the friction coefficient, Qik is the diffusion co-
efficient, and fa is the distribution function of particles. The
velocity of the incident particle is vai while 𝑣 is the relative
velocity between the incident particle and background parti-
cle. Here Fi(𝑣) and Dik(𝑣) are determined functions, and Wk

is the Wiener process.[31] The stochastic process is defined on
the probability space (RT,ℬT,PW ), where T = [0, tmax] and
PW is the measure induced by the Wiener process. ℬT is the
Borel σ -algebra.[31] The solution of the FP equation is the
evolution of distribution function of incident particles, while
the solution of the Itô SDE is the trajectory of a single parti-
cle among these particles. The solution to the FP equation is
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stochastically equivalent to the weak solution of the Itô SDE if
𝐹 (𝑣), D(𝑣) and 𝑃 (𝑣), Q(𝑣) satisfy the following relation[20]

𝐹 (𝑣) = 𝑃 (𝑣), D(𝑣) = Q1/2(𝑣), (3)

where the second equation means Qik(𝑣) = Di j(𝑣)D jk(𝑣).
For a given FP equation, only the distribution function

specifies. One still has the freedom to choose a probability
space, a Wiener process, and a random variable with the de-
sired initial distribution.[31] As the coordinates and velocity
of each particle in the particle ensemble at the initial time is
determined, with one Wiener process, the coordinates and ve-
locities of each particle are unique at each moment of the evo-
lution. These are the strong solutions of the Itô SDE, and the
distribution comprised these strong solutions is a weak solu-
tion of the Itô SDE. The Itô SDE is an equation describing
the random trajectories particles in a system. We can obtain
the evolution of particle distribution function through statisti-
cal methods. The Fokker–Planck equation is an equation de-
scribing the evolution of particle distribution function. It is an
equation that can describe the probability evolution in a certain
speed interval. For different initial random variables that obey
the same distribution function, the strong solutions are differ-
ent for each moment with same or different Wiener processes,
while the distributions formed by these strong solutions are
the same. When only the evolution of the distribution function
is concerned, the solution of the FP equation is stochastically
equivalent to the weak solution of the Itô SDE.[31]

To let readers have a better understanding of SDEs
and their representations, we briefly introduce related ready
knowledge in this section of the article. For more information,
Refs. [26,27,31] can be referred. There are several represen-
tations of SDEs. The two major forms are the Itô SDE and
the Stratonovich SDE. The differences between these two rep-
resentations are the different definitions of the random vari-
able integrals. With the relationship of these two integrals
and the appropriate choice of the coefficients, these two rep-
resentations can be equivalent. The definitions of Itô inte-
gral and Stratonovich integral are given below, followed by
the equivalent relation of the Itô SDE and the Stratonovich
SDE. On an interval T = [a, b] let there be given a real dif-
fusive Markov process W (t), and let there be given a func-
tion f (t,W ) continuous in t. If, for the sequence of partitions
a = t(∆)

1 · · · < t(∆)
n−1 < t(∆)

n = b of the interval T , the maximum
time step ∆ = max(tk+1− tk) converges to zero as n → ∞, then
Itô integral is defined as∫ b

a
f (t,Wt)dWt = lim

∆→0

n−1

∑
k=1

f (tk+1,Wk+1)(Wk+1 −Wk), (4)

and the Stratonovich integral is defined as∫ b

a
f (t,Wt)∘dWt = lim

∆→0

n−1

∑
k=1

f (ξk+1,W (ξk+1))(Wk+1 −Wk),

ξk+1 =
tk+1 + tk

2
, (5)

where “∘” is used to represent the Stratonovich integral. The
solution of an arbitrary SDE

dXt = µ(Xt , t)dt +σ(Xt , t)dWt (6)

is

Xt1 = Xt0 +
∫ t1

t0
µ(Xt , t)dt +

∫ t1

t0
σ(Xt , t)dWt , t1 ≥ t0. (7)

The SDE will be the Itô SDE if the integral in Eq. (7) is the Itô
integral. The SDE will be the Stratonovich SDE if the integral
in Eq. (7) is the Stratonovich integral. A Stratonovich integral
can be presented as the sum of an the Itô integral with a drift
term ∫ b

a
f (t,Wt)∘dWt

=
∫ b

a
f (t,Wt)dWt +

1
2

∫ b

a

∂ f (t,Wt)

∂Wt
dt, (8)

if the function f (t,Wt) satisfies the convergence condition[26]

∫ b

a
E[ f (t,Wt)]

2dt < ∞,
∫ b

a
E[

∂ f (t,Wt)

∂Wt
]2dt < ∞. (9)

The left-hand side of Eq. (8) is the Stratonovich integral while
the first term of the right-hand side is the Itô integral, and the
second term is the Riemann integral. Thus, the same stochas-
tic process which is described by Eq. (2) now can be presented
by the Stratonovich SDE

dXt = (µ(Xt , t)−
1
2

∂σ(Xt , t)
∂Xt

σ(Xt , t))dt

+σ(Xt , t)∘dWt , (10)

i.e., Eq. (2) can be present in the form of the Stratonovich
SDE[22]

dvai = Gi(𝑣)dt +Dik(𝑣)∘dWk, (11)

where

Gi = Fi −
1
2

D jk
∂Dik

∂vaj
, (12)

and Q = ‖Qik‖ and D = ‖Dik‖ are non-negative definite sym-
metry matrices.

2.2. The Stratonovich SDE for Lorentzian plasmas

In this subsection, we obtain the Stratonovich SDE for
Lorentzian plasmas which is equivalent to the FP equation
with the RMJ potential. The friction coefficient 𝑃 and the
diffusion coefficient Q of the FP equation under the RMJ po-
tential can be referred to Refs. [21,30,32],

𝑃 = Γa
∂ℋa

∂𝑣a
, (13)
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Q = Γa
∂ 2𝒢a

∂𝑣a∂𝑣a
, (14)

where ℋa, 𝒢a are the RMJ potential functions,

ℋa = ∑
b

ma +mb

mb

∫
d𝑣b fb(𝑣b)

1
v
, (15)

𝒢a = ∑
b

∫
d𝑣bv fb(𝑣b), (16)

Γa =
z2

az2
be4

4πε2
0 m2

a
lnΛ . (17)

The value of fraction and diffusion parameters are dependent
on the distribution function of background plasmas. An ap-
proximation can be used for a certain distribution function. For
Lorentzian plasmas, the captain collision is electron-ion colli-
sion, and the background plasma can be treated as cold matter,
which means that the thermal velocity is 0 m/s and the distri-
bution function can be treated as fb(vb)∝ δ (vb) ∝ (vb − vb0),
where vb0 is the velocity of background plasma. Taking the
distribution function into the RMJ potential function, we can
reach

ℋa = ∑
b

ma +mb

mb

1
|𝑣a −𝑣b0|

, (18)

𝒢a = ∑
b
|𝑣a −𝑣b0|. (19)

The component forms of the two coefficients are

Pi = −
z2

az2
b lnΛ

4πnb

n2
be4

m2
aε2

0

ma

mr

vi

v3 =−Γanb
ma

mr

vi

v3 , (20)

Qik =
z2

az2
b lnΛ

4πnb

n2
be4

m2
aε2

0

1
v

[
δik −

vivk

v2

]
= Γanb

v2δik − vivk

v3 , (21)

where

mr =
mamb

ma +mb
, (22)

ma, mb are mass of species a and b, respectively; mr is the re-
duced mass of species a and b, and za, zb are the charge num-
ber of species a and b. The number density of specie b is nb,
lnΛ is the Coulomb logarithm, and v = |𝑣a−𝑣b| is the relative
velocity of incident particles and the background plasma. By
inserting Eqs. (20) and (21) into Eq. (3), we can obtain

Gi = −ma

mb
Γanb

vi

v3 , (23)

Dik =

√
Γanb

v

(
δik −

vivk

v2

)
. (24)

Substituting them into the Stratonovich SDE (11) yields

dvai =−ma

mb
Γanb

vi

v3 dt +

√
Γanb

v

(
δik −

vivk

v2

)
∘dWk, (25)

i.e.,

d𝑣a =−ma

mb
Γanb

𝑣

v3 dt −Ω(v)𝑣× (𝑣×d𝑊 ). (26)

It can be extended to the cases with the external field as

d𝑣a =−ma

mb
Γanb

𝑣

v3 −Ω(v)𝑣× (𝑣×d𝑊 )+
𝐹Ldt
ma

, (27)

where 𝐹L is the Lorentzian force and Ω(v) =
√

Γanb
|v|5 .

2.3. The Stratonovich SDE for Maxwellian plasmas

For a more general case, the probability density distribu-
tion function of background plasma is shifting Maxwellian,
i.e.,

fb(𝑣) =
nb

(2π)3/2vTb
exp
(
− (𝑣b − 𝑣̄b)

2

2v2
Tb

)
,

vTb =

√
Tb

mb
, (28)

where nb is the density of background plasma, 𝑣b is the veloc-
ity of background plasma, 𝑣̄ is the average velocity of back-
ground plasma and vTb is the thermal velocity of background
plasma. Taking the distribution function into the RMJ poten-
tial function, we obtain

ℋa = ∑
b

ma +mb

mb

1
ṽa

Φ(η), (29)

𝒢a = ∑
b

√
2vTb

{
η [Φ(η)−Ψ(η)]+

1
η

Φ(η)

}
, (30)

where ṽa = |𝑣a − 𝑣̄b|, η = ṽa√
2vTb

, Φ is the error function

Φ(x) =
2√
π

∫ x

0
e−y2

dy, (31)

Ψ(x) = −1
2

d(Φ(x)/x)
dx

= −1
2

1
x2 Φ(x)− 1

2
1
x

Φ
′(x), (32)

Φ
′(x) =

2√
π

e−x2
. (33)

Inserting Eqs. (29) and (30) into Eqs. (13) and (14), after some
calculations we have

Pi =−ma +mb

mb

1
2v2

Tb
𝒩 𝑣̃a, (34)

Qik =ℳδik − (ℳ−𝒩 )
ṽaiṽak

ṽ2
a

, (35)

where

ℳ = Γanb
1√
2vTb

Φ(η)−Ψ(η)

η
, (36)

𝒩 = 2Γanb
1√
2vTb

Ψ(η)

η
. (37)

Inserting Eqs. (34) and (35) into Eq. (12), we can obtain

Gi = −ma +mb

mb

1
2v2

Tb
𝒩 ṽai
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− 1
4

1
ṽa
[ℳ′ṽai +

ṽaiṽak

ṽ2
a

ṽak(𝒩 ′−ℳ′)]

+[ℳ− (ℳ𝒩 )1/2]
ṽai

ṽ2
a

= −ma +mb

mb

1
2v2

Tb
𝒩 ṽai

− 1
4

1
ṽa
𝒩 ′ṽai +[ℳ− (ℳ𝒩 )1/2]

ṽai

ṽ2
a
, (38)

Dik = ℳ1/2
δik − (ℳ1/2 −𝒩 1/2)

ṽaiṽak

ṽ2
a

, (39)

where

𝒩 ′ = Γanb
1

v2
Tb

Φ(η)− (2η2 +3)Ψ(η)

η2 . (40)

Substituting it to the Stratonovich SDE (11) yields

dvai = −ma +mb

mb

1
2v2

Tb
𝒩 ṽaidt

− 1
4

1
ṽa
𝒩 ′ṽaidt +[ℳ− (ℳ𝒩 )1/2]

ṽai

ṽ2
a

dt

+ℳ1/2dWk − (ℳ1/2 −𝒩 1/2)
ṽaiṽakdWk

ṽ2
a

, (41)

i.e.,

d𝑣 =

{
− ma +mb

mb

1
2v2

Tb
𝒩 − 1

4
1
ṽa
𝒩 ′

+[ℳ− (ℳ𝒩 )1/2]
1
ṽ2

a

}
𝑣̃adt

+𝒩 1/2d𝑊 − (ℳ1/2 −𝒩 1/2)
𝑣̃a × (𝑣̃a ×d𝑊 )

ṽ2
a

. (42)

It can be extended to the cases with the external field as

d𝑣 =

{
− ma +mb

mb

1
2v2

Tb
𝒩 − 1

4
1
ṽa
𝒩 ′

+[ℳ− (ℳ𝒩 )1/2]
1
ṽ2

a

}
𝑣̃adt

+𝒩 1/2d𝑊 − (ℳ1/2 −𝒩 1/2)

× 𝑣̃a × (𝑣̃a ×d𝑊 )

ṽ2
a

+
𝐹Ldt
ma

. (43)

2.4. The Stratonovich SDE for an arbitrary distribution
function of background plasmas

Besides the above two commonly used background par-
ticle distributions, usually we do not know the specific distri-
bution of background particles. However, sometimes through
statistical methods, we can calculate the integral of the distri-
bution function. The PIC simulation is such a case, in which
electrons and ions are discretized as marker-particles. There-
fore, it is very meaningful to get the Stratonovich SDE cor-
responding to the background particles which obey arbitrary
distribution function. In this subsection we will obtain the
Stratonovich SDE for an arbitrary Klimontovich distribution

function of the background particles. It covers the background
particle distribution function information in ℋa and 𝒢a, so as
in 𝑃 and Q.

For an arbitrary distribution function of background parti-
cles, assuming that the order of integration and differentiation
can be reversed and we obtain

𝑃 = Γa
∂ℋa

∂𝑣a

= −Γa ∑
b

ma +mb

ma

∫
d𝑣b fb(𝑣b)

𝑣

v3 , (44)

Q = Γa
∂ 2𝒢a

∂𝑣a∂𝑣a

= Γa ∑
b

∫
d𝑣b fb(𝑣b)

I
v
−Γa ∑

b

∫
d𝑣b fb(𝑣b)

1
v
𝑣𝑣

v2 , (45)

where v = |𝑣a −𝑣b|. Therefore, we have

Qik = Γa ∑
b

∫
d𝑣b fb(𝑣b)

1
v

δik −Γa ∑
b

∫
d𝑣b fb(𝑣b)

1
v

vivk

v2 . (46)

The SDE diffusion coefficient Dik and the FP equation dif-
fusion coefficient Qik meet Eq. (3). The decomposition of
positive-semidefinite symmertic matrix Q is always possi-
ble but, in general, not unique. We provide one scheme to
solve the SDE diffusion coefficient Dik according to Cholesky
decomposition.[22] For the third-order Hermitian positive def-
inite matrix Qik, the expression is

Q =

 Q11 Q21 Q31
Q21 Q22 Q32
Q31 Q32 Q33

 . (47)

After Cholesky decomposition, the lower triangular matrix Dik

is obtained as follows:

D11 =
√

Q11, (48)

D21 =
Q21

D11
, (49)

D31 =
Q31

D11
, (50)

D22 =
√

Q22 −D2
21, (51)

D32 =
Q32 −D21D31

D22
, (52)

D33 =
√

Q33 −D2
31 −D2

32. (53)

Thus, we obtain

D =

 D11 0 0
D21 D22 0
D31 D32 D33

 . (54)

According to Eq. (12), the expression of 𝐺 can be obtained.
Because the integral is solved for the diffusion coefficient Q in
the FP equation, the part containing the differential in 𝐺 can
be expressed as the differential of Q. After some calculations,
we have

G1 = F1 −
1
2

D11
∂D11

∂va1
− 1

2
D21

∂D11

∂va2
− 1

2
D31

∂D11

∂va3
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= F1 −
1
4

∂Q11

∂va1
− 1

4
D21

D11

∂Q11

∂va2
− 1

4
D31

D11

∂Q11

∂va3
, (55)

G2 = F2 −
1
2

D11
∂D21

∂va1
− 1

2
D21

∂D21

∂va2
− 1

2
D22

∂D22

∂va2

− 1
2

D31
∂D21

∂va3
− 1

2
D32

∂D22

∂va3

= F2 +
1
4

D21

D11

∂Q11

∂va1
− 1

2
∂Q21

∂va1
− 1

4
∂Q22

∂va2

+
1
4

D21(D22D31 −D21D32)

D2
11D22

∂Q11

∂va3

− 1
2

D22D31 −D21D32

D11D22

∂Q21

∂va3
− 1

4
D32

D22

∂Q22

∂va3
, (56)

G3 = F3 −
1
2

D11
∂D31

∂va1
− 1

2
D21

∂D31

∂va2
− 1

2
D22

∂D32

∂va2

− 1
2

D31
∂D31

∂va3
− 1

2
D32

∂D32

∂va3
− 1

2
D33

∂D33

∂va3

= F3 +
1
4

D31

D11

∂Q11

∂va1
− 1

2
∂Q31

∂va1

+
1
4

D21(D21D32 −D22D31)

D2
11D22

∂Q11

∂va2

+
1
2

D22D31 −D21D32

D11D22

∂Q21

∂va2

+
1
4

D32

D22

∂Q22

∂va2
− 1

2
∂Q32

∂va2
− 1

4
∂Q33

∂va3
. (57)

The differential of Q with respect to velocity can be ex-
pressed as

∂Qik

∂vaj
=

∂

∂vaj

(
Γa ∑

b

∫
d𝑣b fb(𝑣b)

1
v

δik

−Γa ∑
b

∫
d𝑣b fb(𝑣b)

1
v

vivk

v2

)
= Γa ∑

b

∫
d𝑣b fb(𝑣b)

v j

v3 δik −Γa ∑
b

d𝑣b fb(𝑣b)

×
[
−

3v j

v5 vivk +
1
v3 δi jvk +

1
v3 δ jkvi

]
. (58)

Bringing the expression of Gi into Eq. (11) and using the nu-
merical solution or statistical methods to process the integra-
tion, we can use the Stratonovich SDE to research the dynamic
behavior of incident particles with Coulomb collisions when
the background particles are arbitrary distribution functions.
Considering the marker-particles setting in the PIC simulation,
compared with the actual situation, the number of particles
used in each grid is reduced, and the value of ∂Qik/∂vaj corre-
sponding to the SDE coefficient is larger than the actual one.
Thus, a correction is necessary for PIC simulation. Assuming
that each marker-particle represents Nm real particles, the val-
ues of mass and charge of marker-particle are Nm times as the
values of a real particle. Discretise the distribution function of
marker-particle using the Klimontovich representation

fb(𝑥b,𝑣b, t) =
N

∑
n=1

𝒮(𝑥b −𝑥bn)δ (𝑣b −𝑣bn), (59)

where N is the number of marker-particle, 𝒮 is the shape
function.[33] We obtain the values of Pi, Qik and ∂Qik/∂vaj of
marker-particle as

Pi = −Γma ∑
b

ma +mb

ma

N

∑
n
𝒮(𝑥−𝑥bn)

vi

v3 , (60)

Qik = Γma ∑
b

N

∑
n
𝒮(𝑥−𝑥bn)

1
v

δik

−Γma ∑
b

N

∑
n
𝒮(𝑥−𝑥bn)

1
v

vivk

v2 . (61)

∂Qik

∂vaj
= Γma ∑

b

N

∑
n
𝒮(𝑥−𝑥bn)

v j

v3 δik

−Γma ∑
b

N

∑
n
𝒮(𝑥−𝑥bn)

×
[
−

3v j

v5 vivk +
1
v3 δi jvk +

1
v3 δ jkvi

]
. (62)

Here Γma = N2
mΓa is the collision coefficient for marker-

particle. In this situation, the distribution function of real par-
ticle is

fb(𝑥b,𝑣b, t) =
N

∑
n=1

𝒮(𝑥b −𝑥bn)δ (𝑣b −𝑣bn)Nm. (63)

Thus, we can obtain Pri, Qrik and ∂Qrik/∂vaj for real particles
in the PIC simulation process

Pri = −NmΓa ∑
b

ma +mb

ma

N

∑
n
𝒮(𝑥−𝑥bn)

vi

v3 , (64)

Qrik = NmΓa ∑
b

N

∑
n
𝒮(𝑥−𝑥bn)

1
v

δik

× −NmΓa ∑
b

N

∑
n
𝒮(𝑥−𝑥bn)

1
v

vivk

v2 . (65)

∂Qrik

∂vaj
= NmΓa ∑

b

N

∑
n
𝒮(𝑥−𝑥bn)

v j

v3 δik

−NmΓa ∑
b

N

∑
n
𝒮(𝑥−𝑥bn)

×
[
−

3v j

v5 vivk +
1
v3 δi jvk +

1
v3 δ jkvi

]
. (66)

Therefore, the relationship of the coefficient between real par-
ticle and marker-particle is

𝐹r =
1

Nm
𝐹 , (67)

Gr =
1

Nm
G. (68)

By inserting Eqs. (60)–(62) to Eqs. (3) and (55)–(57), the ex-
pression of 𝐹 and G for marker-particle can be gained. Then
with Eqs. (67)–(68) and Eq. (11), we can obtain the expression
of the Stronovich SDE for the arbitrary distribution function of
the background plasma in the PIC simulation.
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3. The algorithm format and programming of
ISSDE
Once we have obtained the Stratonovich SDE, according

to requirement of the Euler–Maruyama method and the defini-
tion of the Stratonovich integral, the Stratonovich SDE can be
discretized to construct the Monte Carlo simulation program
ISSDE containing the Coulomb collision effect. For electron-
ion collision, due to me ≪ mi, the change of moment and en-
ergy of ion is very small. The Lorentzian plasma model can
then be used in the case that the background ion can be treated
as cold, which means the thermal velocity of background ion
is 0m/s. For ion-ion or electron-electron collision, the back-
ground electron and ion cannot be treated as still, so Eq. (43)
will be used to take the background temperature into consid-
eration. For Lorentzian plasmas, Eqs. (26) and (27) are the
Stratonovich SDE for general types of test particles and the
background plasma. This case can be more simplified accord-
ing to the condition

mr =
mamb

ma +mb
=

memi

me +mi
, me ≪ mi, (69)

and hence

me

mr
≈ 1. (70)

The coefficients are now

Pi =−Γanb
vi

v3 , Qik = Γanb
v2δik − vivk

v3 , (71)

and the coefficient of the Stratonovich SDE are now

Gi = 0, Dik =

√
Γanb

v

(
δik −

vivk

v2

)
. (72)

Substituting Eq. (72) into the Stratonovich SDE (11), we have

d𝑣a =−Ω(v)𝑣× (𝑣×d𝑊 ), (73)

for the case with an external field, we have

d𝑣a =−Ω(v)𝑣× (𝑣×d𝑊 )+
𝐹Ldt
ma

. (74)

3.1. The discretization of the Stratonovich SDE

Consider the simplified Stratonovich SDE for Lorentzian
plasmas that needs to be solved numerically,{

d𝑣 =−Ω(v)𝑣× (𝑣×d𝑊 ),

d𝑥= 𝑣dt.
(75)

Discretizing them according to the requirement of the Euler–
Maruyama method and the definition of the Stratonovich inte-
gral, we have

𝑣n+1 = 𝑣n −Ω( vn+1+vn

2 )𝑣
n+1+𝑣n

2

× [𝑣
n+1+𝑣n

2 × (𝑊 n+1 −𝑊 n)],

𝑥n+1 = 𝑥n + 𝑣n+1+𝑣n

2 dt,

(76)

where the superscript n indicate the time step. For the algo-
rithm of implicit midpoint format, the geometric relationship
of each vector is shown in Fig. 1. From the cross product rela-
tionship shown in Eq. (76), we can see(

𝑣n+1 −𝑣n

2

)2

+

(
𝑣n+1 +𝑣n

2

)2

= (𝑣n)2 = (𝑣n+1)2. (77)

Therefore, for a Lorentzian plasma, the implicit midpoint for-
mat is exactly energy conservative. As the equation is im-
plicit, it can be iteratively solved by the Newton–Raphson
method.[34–36]

vn⇁-vn

vn⇁+vn

vn vn⇁

2

Fig. 1. The geometric relationship of each vector in the implicit mid-
point format in the case of the Lorentzian plasma.

For the Stratonovich SDE of a Maxwellian plasma, the
discrete process is similar, while the nonlinear equations are
solved iteratively by the more stable Broyden method.[37]

3.2. A splitting method for dynamics of charged particles
with Coulomb collision

When there is a complex external field, using conven-
tional algorithms to calculate the Stratonovich SDE may not
have long-term stability because of the accumulation of nu-
merical errors. In order to improve the stability of the numer-
ical algorithm, a splitting method is used. The equations that
ISSDE mainly requires to be solved are{

d𝑥 = 𝑣dt,

d𝑣 = q
m𝐸dt + q

m𝑣×𝐵dt +𝑎cdt,
(78)

where 𝑎c is the acceleration caused by the Coulomb collision.
For the Lorentzian plasma,

𝑎cLdt =−ma

mb
Γanb

𝑣

v3 dt −Ω(v)𝑣× [𝑣×d𝑊 ], (79)

and for the Maxwellian plasma,

𝑎cMdt =

[
− ma +mb

mb

1
2v2

Tb
𝒩 − 1

4
1
ṽa
𝒩 ′

+[ℳ− (ℳ𝒩 )1/2]
1
ṽ2

a

]
𝑣̃adt

+𝒩 1/2d𝑊 − (ℳ1/2 −𝒩 1/2)

× 𝑣̃a × (𝑣̃a ×d𝑊 )

ṽ2
a

. (80)
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Equation (78) can be written as{
d𝑥
dt = 𝑣,
d𝑣
dt = q

m𝐸+ q
m𝑣×𝐵+𝑎c.

(81)

According to splitting method, the equation can be regarded
as a vector field 𝐹 (𝑥,𝑣)

𝐹 (𝑥,𝑣) =

[
𝑣
0

]
+

[
0

q
m𝐸

]
+

[
0

q
m𝑣×𝐵

]
+

[
0
𝑎c

]
. (82)

Therefore, the above system can be divided into four subsys-
tems and then solved separately. These subsystems are

φ
F1
t :

{
𝑥(t) = 𝑥0 + t𝑣0,

𝑣(t) = 𝑣0,
(83)

φ
F2
t :

{
𝑥(t) = 𝑥0,

𝑣(t) = 𝑣0 + tq𝐸(𝑥0)/m,
(84)

φ
F3
t :

{
𝑥(t) = 𝑥0 + t𝑣0,

𝑣(t) = exp(−t q
m𝐵̂(𝑥0)))𝑣0,

(85)

where

𝐵̂(𝑥) =

 0 −B3(𝑥) B2(𝑥)
B3(𝑥) 0 −B1(𝑥)
−B2(𝑥) B1(𝑥) 0

 , (86)

φ
F4
t :

{
𝑥(t) = 𝑥0,∫

d𝑣 =
∫
𝑎cdt.

(87)

The main purpose is that for the deterministic parts, which are
φ

F1
t , φ

F2
t , φ

F3
t , we can use the volume-preserving algorithm

to calculate, while the Coulomb collision part, which is φ
F4
t ,

still uses the Newton–Raphson method or the quasi-Newton
method for calculation. In order to construct a second-order
algorithm of implicit midpoint format similar to Boris algo-
rithm, we can use such a combination

G2
h = φ

F1
h/2 ∘φ

F2
h/2 ∘φ

F4
h/2 ∘φ

F3
h ∘φ

F4
h/2 ∘φ

F2
h/2 ∘φ

F1
h/2. (88)

Then calculate each part separately. When there is no colli-
sion, it reduces to the normal Boris algorithm as[38]

G2
h = φ

F1
h/2 ∘φ

F2
h/2 ∘φ

F3
h ∘φ

F2
h/2 ∘φ

F1
h/2. (89)

3.3. Design of the ISSDE simulation program

The ISSDE simulation program is implemented by the
C++ programming language and can be used on Unix-like op-
erating systems. It comprises I/O modules, initialization mod-
ules, particle pusher modules, parallel modules, field configu-
ration modules, external force field modules, and other exten-
sible modules. I/O modules call library functions from Lua[39]

and HDF5.[40] The input files are Lua scripts so that users can

set parameters and physical problems conveniently and im-

prove the efficiency of the program compilation. The output

data is recorded and stored in the HDF5 format. It provides

some static sampling methods in the initialization modules.

The particle pusher module applies the algorithm given in Sec-

tion 3.1 and other types of particle pusher functions, such as

the collisionless volume-preserving algorithm and the Runge–

Kutta algorithm. Parallel modules use the Message Passing

Interface (MPI), these modules can sample the particles in par-

allel to speed up the calculation process. Field configuration

and external force field configuration module include a variety

of different configurations of the electromagnetic fields and

external field, such as the radiation field and the gravity field.

The extensible model is a script module that is written in Bash

to enhance the scalability of the ISSDE simulation program.

3.4. ISSDE program flow chart

Figure 2 shows the flowchart of the ISSDE simulation

program. The parallel program will be divided into multi-

ple processes, each of which calculates the evolution of dif-

ferent particles in sequence. The I/O settings can be divided

into Lua script as the input and configurations of the HDF5

file as the output. Lua script contains the basic parameters

necessary for the program to run, including the basic physi-

cal parameters of the background plasma, the select switches

of lots of configurations of the external fields, and the basic

parameters of charged particles that need to be studied. The

HDF5 file saves the coordinates and velocities of each parti-

cle in the phase space at each moment. The Wiener process

and the corresponding coefficients contain the collision infor-

mation of particles. We can get the value of Wt according to

the definition of the Wiener process. The Wiener process is a

stochastic process with the initial value W0 = 0. The increment

of Wt is a random variable that obeys a Gaussian distribution

with dt as the variance and 0 as the mean value. According to

the definition of the Wiener process, we can see that it is possi-

ble to generate values of the Wiener process for each moment

once we know the number of steps that to be calculated and the

time step of evolution. The value of Wt will then be brought

into the quasi-Newton iteration loop of the main loop. Initial

parameters will initialize the charged particle parameters, such

as the particle’s initial position distribution, the initial velocity

distribution, which is prepared for the main particle evolution

loop. The main loop calculates the evolution of charged par-

ticles under the external field and the random force generated

by the collision, and the data of each moment will be stored.
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N particles

n N1

I/O setting

stochastic variables
for Wiener process

initial value setting

Quasi Newton
iteration

t<T

end

Yes

No

data saving

vn⇁↪xn⇁

sk↪yk<given
accuracy

No

Yes

(a) ISSDE flow chart (b) Quasi Newton iteration

…

t/t⇁

t/

Hk/H⇁
↼sk↩HSyk↽SskSH

sk/↩HSF

H/↩J-1

yk/Fk↩F

vn/vn⇁sk

Fk/f↼vk)

Fk/fk,H/Hk

skSHSyk

F/f(vn),J/J(vn)

vn,xn

′

′

Fig. 2. Flow chart of the ISSDE and iteration of the quasi-Newton method.

4. Slowing down process in Lorentzian plasmas
and Maxwellian plasmas
High-speed electron beam injection is a mechanism of

unmagnetized plasma heating. The electron beam undergoes
a slowing down process in the plasma and raises the local
plasma temperature by transferring the kinetic energy to the
plasma. Therefore, it is significant to study the effective mech-
anism of the slowing down process. In this section, slowing
down processes are simulated using the ISSDE and compared
with the results given by the solution of the FP equation. Not
only the correctness of the ISSDE simulation can be verified,
more physical information of the slowing down process can
also be obtained through the Monte Carlo numerical simula-
tion of the ISSDE.

4.1. Slowing down process of the electron beam in
Lorentzian plasmas

In the calculation of particle slowing down process, we
assume that the interactions between incident electrons and
between background particles are negligible. Only scattering
effects of background particles to incident particles are con-
sidered. Incident particles have the same velocity and their
distribution function is

fa(𝑣, t = 0) = naδ (𝑣−𝑣0), 𝑣0 = v0𝑒1, (90)

where the subscript a represents the incident particles, na is the
number density of the incident particles, and v0 is the veloc-
ity of the particles at t = 0 with the initial direction 𝑒1. The

general expression of the FP equation of the incident particles
is

∂ fa

∂ t
+𝑣a ·

∂ fa

∂𝑟
+

𝐹

ma
· ∂ fa

∂𝑣a

=

(
δ fa

δ t

)
c
=− ∂

∂𝑣a
·
(

faΓa
∂ℋa

∂𝑣a

)
+

1
2

∂ 2

∂𝑣a∂𝑣a
:
(

faΓa
∂ 2𝒢a

∂𝑣a∂𝑣a

)
. (91)

4.1.1. Theoretical approximation results of FP equa-
tion

Assuming that there is no external field in the background
plasma, i.e. 𝐸 = 0 V/m, 𝐵 = 0 T, then 𝐹L = 0 N. Only
the background plasma scattering effect of incident particles
is taken into account. Therefore, the distribution function of
the incident particles is the function of velocity and time, i.e.,
fa = f (v, t), and we have ∂ fa

∂𝑟
= 0. Substituting it into the left-

hand side of Eq. (91) yields(
∂ fa

∂ t

)
c
=

∂ fa

∂ t
+𝑣a ·

∂ fa

∂x
+

𝐹L

m
· ∂ fa

∂𝑣a
=

∂ fa

∂ t
, (92)

and the FP equation of the incident particle is

∂ fa

∂ t
= − ∂

∂𝑣a
·
(

faΓa
∂ℋa

∂𝑣a

)
+

1
2

∂ 2

∂𝑣a∂𝑣a
:
(

faΓa
∂ 2𝒢a

∂𝑣a∂𝑣a

)
. (93)

Substituting the specific form of fa into the equation and mul-
tiplying both sides with 𝑣a and then integrating it with respect
to 𝑣b, we obtain

∂

∂ t
𝑣0 = Γa

∂ℋa

∂𝑣a
|𝑣a=𝑣0

= Γa
ma +mb

mb

∂

∂𝑣0

∫
d𝑣b fb(𝑣b)

1
|𝑣0 −𝑣b|

. (94)

Let the background plasma obeys the following distribution

fb(𝑣b, t = 0) = nbδ (𝑣b −𝑣b0), (95)

where nb and vb0 are the number density and bulk velocity of
the background particle, respectively. Thus, the corresponding
Rosenbluth potential is

ℋa(𝑣b) =
ma +mb

mb
∑
b
|𝑣a −𝑣b0|. (96)

Substituting Eq. (95) into Eq. (94), we have

∂𝑣0

∂ t
=−nbΓa

ma +mb

mb

𝑣0 −𝑣b0

|𝑣0 −𝑣b0|3
. (97)

We may define the slowing down time as

τs(𝑣0) =− 𝑣0
∂𝑣0
∂ t

, (98)

and the corresponding slowing down frequency is

νs(𝑣0) = nbΓa
ma +mb

ma

𝑣0 −𝑣b0

𝑣0|𝑣0 −𝑣b0|3
. (99)

This solution is consistent with the solution in Ref. [41].
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4.1.2. Numerical results of the ISSDE in an unmagne-
tized Lorentzian plasma

Under the parameters shown in Table 1, we sample 10048
particles in total and make a statistical average of the entire in-
cident particle system. The collision time between particles α

and β is calculated by[42]

ταβ =
3
√

mα T 3/2
α ε0

4
√

2πz2
α z2

β
lnΛe4nβ

, (100)

It shows the evolution of the averaged velocity of the incident
particles parallel to the incident direction in Fig. 3. The result
of the ISSDE program simulation shown by the dotted line and
the result of the FP equation shown by the solid line described
by Eq. (97) are in good agreement. The averaged velocity of
incident particles parallel to the incident direction gradually
decreases and then tends to be stable. The present result is
consistent with Ref. [23], which used a different method to de-
scribe the slowing down process. This proves the correctness
of using the ISSDE simulation program.

Table 1. The coefficients of the slowing down process without extra
magnetic field, where τei means the collision time between electrons
and ions.

Variable Parameter Value

𝑥 Initial position (m) (1.05,0,0)

𝑣 Initial velocity (m/s) (5.5×106,0,0)

∆t Time step (s) 1×10−3τei

𝐵 Initial magnetic field strength (T) (0,0,0)

n Density of plasma (cm−3) 1.5×1014

Te Temperature of electron in plasma (eV) 8

𝐸 Initial electric field strength (V/m) (0,0,0)

T Total number of time steps 80000

0

t (τei)

0

1

20 40 60 80

2

3

4

5

6

v
x
 (

1
0

6
 m

/
s)

FP equation
ISSDE

Fig. 3. The slowing down process of the electron beam along the incident
direction (X-axis direction). The solid line represents the solution of the FP
equation, while the dotted line represents the simulation result of the ISSDE.

4.1.3. Numerical results of the ISSDE in magnetized
Lorentzian plasmas

For situations with external fields, the splitting method
will be used and 𝐹L is added to the right-hand side of Eq. (75).

For the case of considering only the external uniform magnetic
field, it can be seen from Eq. (74) that the incident particle
system is in conservation of energy. Let the external magnetic
field is along the z direction, and the magnetic field intensity
is B0 = 2×10−3 T. For electron-ion collision, the Lorentzian
plasma model is used to simplify the calculation. The electron-
ion collision can also be calculated by the Maxwellian plasma
model, but the result is similar to that of the Lorentzian plasma.
The evolution of the ensemble average of the energy of inci-
dent electrons in the Lorentzian and Maxwellian plasmas is
calculated by the ISSDE. The result is shown in Fig. 4. The
ensemble average of the energy is transferred in all directions
because of the influence of the magnetic field and the Coulomb
collision, and eventually all directions reach the same value,
and the ensemble average of the total energy keeps unchanged.
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Fig. 4. The evolution of the ensemble-averaged energy of the incident electron
beam in all directions in the magnetized plasma: (a) the background plasma
is a Lorentzian plasma, (b) the background plasma is a Maxwellian plasma.

Taking advantage of the feature that the total energy is
constant in a Lorentzian plasma, we use the two-stage stochas-
tic Runge–Kutta method R2,[43] the splitting method with two-
stage stochastic Runge–Kutta method R2 in the collision part,
and the splitting method with implicit point format in the col-
lision part to calculate. Then we compared the relative error of
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the ensemble-averaged energy. The result is shown in Fig. 5.
It can be seen that when the time step is 5× 10−1τei, the nu-
merical results obtained by the full stochastic Runge–Kutta
method diverge, and the result of the split method is better
than the result of the full stochastic Runge–Kutta method. The
results of the splitting method with the implicit midpoint for-
mat in the collision part are better than the splitting method
with the stochastic Runge–Kutta method. The relative error
of the splitting method with the implicit midpoint format re-
mains in the order of 10−10 when the error of the Newton–
Raphson or the quasi-Newton method is 10−13. Therefore,
the splitting method with the implicit midpoint format in the
collision part has certain advantages. For a one-dimensional
one-Wiener process, stochastic Runge–Kutta methods such as
CL, E1 and E2 have a convergence order of 1.5.[44,45] How-
ever, for multi-dimensional multi-Wiener process, their con-
vergence order will become 0.5. The implicit midpoint rule
will not have such a problem, and the convergence order re-
mains 1.0.
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Fig. 5. The relative error of ensemble-averaged energy obtained by vari-
ous methods. (a) The solid line is the result of the stochastic Runge–Kutta
method, the dotted line is the result of the splitting method with stochastic
Runge–Kutta method in the collision part. (b) The dashed line is the result
of the splitting method with implicit midpoint format in the collision part.

4.2. Relaxation process of electrons with Maxwellian dis-
tribution in magnetized Maxwellian electrons

Compared with the Lorentzian plasma, the objective
function and the derivative of the objective function in the
Maxwellian plasma are much more complicated. The Ja-
cobian matrix may be sparse or singular for the inappropri-
ate choice of stochastic variables. Thus, for the Maxwellian
plasma, we adopt a more stable Broyden method instead of the
Newton–Raphson method to solve the nonlinear equations. As
a benchmark, the incident particles are set as electrons with
the same velocity distribution as the background magnetized
Maxwellian electrons. The average velocity is 0 m/s and the
temperature is 8 eV. Considering the relaxation process, if the
incident electrons are constantly in thermal equilibrium and
keep the temperature unchanged, the correctness of the pro-
gram will be proven. As shown in Fig. 6, the temperature of
the incident electron ensemble in all directions is mostly main-
tained around 8 eV. The consistency between the numerical
results and the physical results shows the correctness of the
ISSDE program.
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Fig. 6. Temperature evolution of electrons with Maxwellian distribu-
tion in magnetized Maxwellian electrons in three directions. Here τee
is the characteristic time of the electron-electron collision. The initial
temperature of incident electrons is 8 eV as same as the background
electrons.

4.3. Slowing down process of beams in the Maxwellian
plasma

Neutral beam injection heating is one of the fundamen-
tal plasma heating methods. The injected high-energy neutral
beam will turn into a high-energy ion beam through ioniza-
tion and charge exchange with the background plasma. Then
the high-energy ion beam will become thermal and deliver
the energy to the background electrons and ions due to the
collision, eventually reach thermal equilibrium with the back-
ground plasma. Using the ISSDE program, we can simulate
the slowing down process of the incident particle beam. The
evolution of the incident particle distribution function and the
ensemble average of the physical quantities can then be cal-
culated. In the following subsection, we simulate the slowing
down process in the magnetized Maxwellian electrons when
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the incident particles are electrons and ions. For electron-
electron collision and ion-ion collision, the background elec-
tron and ion cannot be treated to be still, so the Eq. (43) will be
used to take the background temperature into consideration.

4.3.1. Slowing down process of electron beams in mag-
netized Maxwellian electrons

For the case of magnetized plasma, the influence of an
external field needs to be added to the equation. The param-
eters are set as follows: the external electric field intensity is
𝐸 = 0 V/m, the external magnetic field is along the z direc-
tion, and the magnetic field intensity B0 = 2× 10−3 T. The
direction of the electron beam is perpendicular to the direction
of the magnetic field. The evolution of the ensemble-averaged
velocity with time is shown in Fig. 7. Affected by the magnetic
field, the momentum of the incident electrons continuously
transfers around the directions that are perpendicular to the
magnetic field. Due to the collision, the ensemble-averaged
velocity gradually slows down, and finally drops to zero. This
means that the ensemble-averaged kinetic energy of the par-
ticles is transformed due to the impact of the collision. The
evolution of the ensemble average of the total energy in differ-
ent directions is shown in Fig. 8.
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Fig. 7. Ensemble-averaged velocity evolution of electron beam in mag-
netized Maxwellian electron in three directions, with τee being the char-
acteristic time of the electron-electron collision.
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cates the evolution of ensemble-averaged total energy.

Because of the impact of collision, the ensemble average
of the total energy decreases over time, and eventually keeps
unchanged. The total energy of the electron beam is trans-
ferred to the background electrons by collision. The balance
of the incident electron beam can be seen by the temperature
evolution of the incident electron beam, as shown in Fig. 9.
The total energy of the incident electrons is composed of the
average kinetic energy and internal energy. During the slow-
ing down process, part of the average kinetic energy transfers
to the internal energy of the incident electrons, another part
delivers to the background electrons. When the slowing down
process is not violent, the average kinetic energy of the inci-
dent electrons will first transfer to the internal energy of the
particles. Then the internal energy of the electrons will trans-
fer to the background electrons in the form of heat conduction.
Finally, the incident electrons and the background electrons
reach thermal equilibrium. The evolution of the distribution
function can reflect this more vividly, as shown in Fig. 10.
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Fig. 9. Temperature evolution of electron beam in Maxwellian elec-
tron in three directions. The final equilibrium temperature in the three
directions is 8 eV.

Under the influence of the magnetic field, the incident
electrons rotate in the velocity space. The incident electrons
go through the effects of slowing down and diffuse. The dif-
fusion process is dominant at the beginning, so the distribu-
tion function gradually spreads in the velocity space. How-
ever, when the ensemble-averaged velocity of electrons con-
stantly decreases, the slowing down process is dominant as the
electron-electron collision cross-section becomes larger. As
the slowing down process of the electrons becomes dominant,
the distribution function of the incident particles tends to be
a Maxwellian distribution function. When the particle tem-
perature and the background reach equilibrium, the incident
particle system has a Maxwellian distribution in the velocity
space, and the corresponding standard deviation is the back-
ground electron temperature.
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4.3.2. Slowing down process of ion beams in magne-
tized Maxwellian electrons

Consider an ion as a incident particle, and set the initial
velocity of the incident ion to be 5.5×105 m/s, the evolution
of the ensemble average of ion’s velocity is shown in Fig. 9.
When the relative velocity of the incident ion is small, the col-
lision cross section between the ion and the electron will be
large, so that the slowing down process is dominant. Com-
pared with the ion cyclotron period, the time scale of ion-
electron collision is about 250 times smaller. It can be seen
that the ensemble-averaged velocity drops to zeros in about
one or two ion cyclotron periods. The evolution of the ensem-
ble average of the total energy of incident ions is shown in
Fig. 12.
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Fig. 11. Ensemble-averaged velocity evolution of ion beam in magne-
tized Maxwellian electron in three directions for initial velocity vx = 5.5×
105 m/s, with τie being the characteristic time of the ion-electron collision.
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Similar to the electron-electron collision, the total energy
of the ion transfers to the background electron through the col-
lision, and finally the incident ions and the background elec-
trons reach equilibrium. Compared with electron-electron col-
lisions, in the ion-electron collision process, the diffusion pro-
cess of incident ions is not dominant compared to the slowing
down process, this is because in the ion-electron collision pro-
cess, most of the small-angle scattering occurs. The momen-
tum exchange and energy exchange of ions and electrons in
the ion-electron collision process are rapid when the slowing
down process is dominant. This can be seen from the evolu-
tion of ensemble average of the incident ion temperature, as
shown in Fig. 13. The rapid exchange of the momentum and

energy between the ion and electron makes most of the average
kinetic energy of incident ions transfer to the background elec-
trons and a small part of the average kinetic energy transfer to
its own internal energy. The final ion temperature is consistent
with the background electron temperature.

The evolution of the incident ion distribution function is
shown in Fig. 14. The velocity in the x–y direction gradually
drops to zero due to the slowing down process. The shape
of the distribution function can reflect the diffusion process of
collision. The diffusion process does not change as violent
as the case of electron-electron collision because most of the
small-angle scattering occurs.
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Fig. 14. Evolution of distribution function of ion beam in magnetized Maxwellian electron in xy velocity space: (a) t = τie, (b) t = 2τie, (c)
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5. Summary

Based on the stochastic equivalence between the
Stratonovich SDE and the FP equation, the specific
Stratonovich SDE equivalent to the FP equation with the RMJ
potential is obtained. The splitting method and the implicit
midpoint method are used to increase the numerical stabil-
ity of the algorithm for dynamics of charged particles with
Coulomb collision. The Monte Carlo implicit simulation pro-
gram ISSDE for solving the Stratonovich SDE is developed
to study the behavior of collisional plasma. Consider the
background plasma as a Lorentzian plasma and a Maxwellian
plasma. The ISSDE is used to simulate the slowing down pro-
cess and relaxation process of different particles in the unmag-
netized and magnetized plasmas. The consistency of the re-

sults obtained from the ISSDE simulation program with the
results obtained from the FP equation about the slowing down
process proves the accuracy of the ISSDE simulation program,
and we can get more detailed physical information by the
ISSDE.

The ISSDE simulation program can solve dynamic prob-
lems of the collisional plasma due to the simplicity of its im-
plementation. When the distribution function of the incident
particle ensemble becomes more complicated, the calculation
with the FP equation becomes more difficult since the dis-
tribution function of the particle ensemble needs reconstruc-
tion in each calculation step. However, the ISSDE simulation
program tracks the trajectories of individual particles directly.
Therefore, once given the initial distribution of all particles
in a charged particle system, all the information of the entire
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charged particle ensemble at any time can be obtained.
As a Monte Carlo program, the present work ignores the

influence of the self-consistent field on the particle ensemble.
The consideration of self-consistent field is an important phys-
ical quantity that distinguishes the single-particle model from
the kinetic model. The algorithm introduced in this article
can be treated as a particle pusher module with Coulomb col-
lision in the kinetic theory model such as SymPIC.[38] The
kinetic theory model describes the motion of charged parti-
cles under the effect of the self-consistent field and exter-
nal field, which makes it more comprehensively to describe
the behavior of plasma. However, most of the kinetic theory
models are designed for collisionless plasma and it contains
numerical collisions itself because of the choice of marker
particle, discrete grid and shape of particles. It can signif-
icantly improve the research of advanced collisional algo-
rithm if we apply the Stratonovich SDE to the traditional or
some structure-preserving kinetic theory model and distin-
guish the real collision from the numerical collision clearly.
We can consider the variational and canonical symplectic
particle-in-cell (PIC),[45–47] and the noncanonical symplectic
PIC algorithm.[38,48,49]

It is worth mentioning that according to the definition
of kinetic integration which is a special limit of A-type
integration,[50–52] we can also obtain the kinetic SDE equiv-
alent to FP equations. The kinetic integration can be defined
in terms of Itô integration,[53]∫

B(𝑥)♦d𝑊 :=
∫

B(𝑥)d𝑊 +
1
2

∫ [
∂

∂𝑥
·D(𝑥)

]
dt, (101)

where D(𝑥) =B(𝑥)BT (𝑥), “♦” is used to represent the kinetic
integration. The kinetic SDE can then be obtained as follows:

dvai = Fi(𝑣)dt +Dik(𝑣)dWk

= Ki(𝑣)dt +Dik(𝑣)♦dWk, (102)

where

Ki = Fi −
1
2

∂

∂vaj
Qi j

= Fi −
1
2

∂Dik

∂vaj
Dk j −

1
2

Dik
∂Dk j

∂vaj
. (103)

For a Lorentzian plasma, we have

Dik =

√
Γanb

v

(
δik −

vivk

v2

)
, (104)

Ki = Fi −
1
2

∂Dik

∂vaj
Dk j −

1
2

Dik
∂Dk j

∂vaj

= −ma

mb
Γanb

vi

v3 . (105)

Substituting Ki and Dik into Eq. (102) we have

dvai =−Γanb
ma

mb

vi

v3 dt +

√
Γanb

v
(δik −

vivk

v2 )♦dWk, (106)

i.e.,

d𝑣a =−ma

mb
Γanb

𝑣

v3 −Ω(v)𝑣× (𝑣×d𝑊 ), (107)

For a Maxwellian plsama, we have

Ki = Fi −
1
2

∂Dik

∂vaj
Dk j −

1
2

Dik
∂Dk j

∂vaj

= −ma +mb

mb

1
2v2

Tb
𝒩 ṽai

− 1
2

[
1
2
𝒩 ′ ṽai

ṽa
−2[ℳ− (ℳ𝒩 )1/2]

ṽai

ṽ2
a

]
− 1

4
𝒩 ′ ṽai

ṽa

= −ma +mb

mb

1
2v2

Tb
𝒩 ṽai −

1
2
𝒩 ′ ṽai

ṽa

+[ℳ− (ℳ𝒩 )1/2]
ṽai

ṽ2
a
. (108)

Substituting Eq. (108) into Eq. (102), we have

dvai = Kidt +Dik♦dWk

= −ma +mb

mb

1
2v2

Tb
𝒩 ṽaidt

− 1
2
𝒩 ′ ṽai

ṽa
dt +[ℳ− (ℳ𝒩 )1/2]

ṽai

ṽ2
a

dt

+ℳ1/2♦dWi − (ℳ1/2 −𝒩 1/2)
ṽaiṽak

ṽ2
a
♦dWk, (109)

i.e.,

d𝑣 =

{
− ma +mb

mb

1
2v2

Tb
𝒩 − 1

2
𝒩 ′ 1

ṽa

+[ℳ− (ℳ𝒩 )1/2]
1
ṽ2

a

}
𝑣̃adt

+𝒩 1/2♦d𝑊 − (ℳ1/2 −𝒩 1/2)

× 𝑣̃a × (𝑣̃a ×d𝑊 )

ṽ2
a

. (110)

Compared with the Stratonovich SDE, although the expression
of kinetic SDE is not much different, we need to follow the
definition of the kinetic integration to discrete the it in numer-
ical simulation. Hütter gave a definition of kinetic integration
as[53]∫

B(𝑥)♦d𝑊 : = ms− lim
M→∞

M

∑
i=1

1
2
[D(𝑥ti+1) ·Dinv(𝑥ti)+1]

×B(𝑥ti)[𝑊ti+1 −𝑊ti ]. (111)

Moreover, the development of A-type integration equivalent
to the Fokker–Planck equation with RMJ potential and the
corresponding numerical methods can be good directions for
research in plasma physics. In systems in which the drift
term originates from a gradient of a potential that is mediated
through the diffusion or mobility tensor, i.e.,

K(𝑣) =−1
2

Q(𝑣)

[
∂

∂𝑣
φ(𝑣, t)

]
, (112)
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the “Boltzmann–Gibbs distribution”

f (𝑣)≈ exp[−φ(𝑣)] (113)

is a stationary solution of Eq. (102). When we know expres-
sions of 𝐾(𝑣) and Q(𝑣), we may calculate φ(𝑣) as

φ(𝑣, t) =−2
∫

Q−1(𝑣)𝐾(𝑣)d𝑣. (114)

It may not be very easy to calculate φ(𝑣) as expressions of
𝐾(𝑣) and Q(𝑣) are very complicated. The process of con-
structing the A-type SDE may be similar to that of the kinetic
SDE. We will report related results elsewhere.
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